Higher Institute of Engineering 6th of October City

Prep. Year: Mid-Term Exam

1st Term: 2005/2006

Mathematics (Calculus I)

Sec:

I

Answer the following questions:

Time: 1 Hour

(1)Generate the membership table of the statement:

$$S = (A - B) \bigcup (B - C)$$

(2)Evaluate the following limits:

(a)
$$\lim_{x \to 3} \frac{x^3 - 27}{\sqrt{x} - \sqrt{3}}$$

(b)
$$\lim_{x \to \infty} \frac{x^2 - 8x + 1}{x^3 + 5x + 3}$$

(c)
$$\lim_{x\to 0} \frac{\sin 2x}{x^2}$$

(3) Find y` and y`` from the following:

(a)
$$y = x^3 + e^{3x} + \sin x$$
 (b) $y = 2^x + \tan^{-1} x$

(b)
$$y = 2^x + \tan^{-1} x$$

(c)
$$y = x.\sinh x$$

(4) Find y from the equation: $x + y + \sin(x + y) = 0$

Higher Institute of Engineering 6th of October City

Prep. Year: Mid-Term Exam

1st Term: 2005/2006

Mathematics (Calculus I) II

Sec: Answer the following questions: Time: 1 Hour (1)Generate the membership table of the statement: $S = (A \bigcup B) \cap (B \bigcup C)$ (2)Evaluate the following limits: (a) $\lim_{x \to 2} \frac{x^3 - 8}{x^2 + 4}$ (b) $\lim_{x\to 0} \frac{e^{3x}-1}{2x}$ (3) Find y` and y`` from the following: (a) $y = x^4 + 2^x + \tan x$ (b) $y = 8 + \sin^{-1} x$ (c) $y = x. \ln x$

(4) Find y` from the equation: $2x + y^3 + \cos(xy) = 0$

Higher Institute of Engineering 6th of October City

Prep. Year: Mid-Term Exam

1st Term: 2005/2006

Mathematics (Calculus I)

Sec: Time: 1 Hour

III

Answer the following questions:

(1)Generate the membership table of the statement:

$$S = (A \cap C) \cup (B - A)$$

(2)Evaluate the following limits:

(a)
$$\lim_{x \to 1} \frac{x^3 - 1}{\sqrt{x} - 1}$$

(b)
$$\lim_{x \to \infty} \frac{x^3 - 8x + 1}{x^4 + 5x + 5}$$

(c)
$$\lim_{x \to 0} \frac{\sin^2 x}{2x}$$

(3) Find y` and y`` from the following:

(a)
$$y = (2x+1)^4 + \ln(2+3x)$$
 (b) $y = \sin^4 x$

$$y = \sin^4 x$$
 (c) $y = x e^{2x}$

(4) Find y from the equation:
$$x^4 + y + \ln(2x + y) = 0$$

Ministry Of Higher Education Higher Institute of Engineering 6th of October City Department of Basic Science

Prep. Year: Final Exam Mathematics: (Calculus I) Course Code, BAS 111

Date: 16/1/2006

- (1)(a)Write the membership table of the statement: $S = (A B) \cap (A \cup C)$
 - (b)Evaluate the following limits:

(i)
$$\lim_{x\to 2} \frac{\sqrt{x} - \sqrt{2}}{x^3 - 8}$$

(ii)
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 + 1}$$

(iii)
$$\underset{x\to 0}{\text{Lim}} \frac{\sin 2x}{\cos 3x}$$

(iv)
$$\lim_{x \to \infty} \frac{x^3 - 8x + 4}{x^3 + x^2 + 3}$$
 (v) $\lim_{x \to 0} \frac{\ln(1 + 3x)}{2x}$

(v)
$$\lim_{x\to 0} \frac{\ln(1+3x)}{2x}$$

(vi)
$$\lim_{x\to 0} \frac{3^x-1}{3x}$$

(2) Find the first derivative of the following functions:

$$(a) f(x) = 2x^4 + \cos 3x$$

$$(b) f(x) = (x^2 + \tan x)^5$$

(a)
$$f(x) = 2x^4 + \cos 3x$$
 (b) $f(x) = (x^2 + \tan x)^5$ (c) $f(x) = e^{2x} + 3\sin^{-1}x$

$$(d) f(x) = x \ln(1 + \cosh x)$$

(d)
$$f(x) = x \ln(1 + \cosh x)$$
 (e) $f(x) = 3 + \frac{\sin x}{x^2 + 3}$ (f) $f(x) = 3^x - \sin^4 x$

$$(f) f(x) = 3^x - \sin^4 x$$

(3)(a)Find y` from the equation: $x^2 + y^2 + x \sin y = 0$

(b)Obtain the maximum and minimum points of the functions:

(i)
$$f(x) = 4 + 4x - x^2$$

(ii)
$$f(x) = x^3 - 3x^2 - 9x$$

(c)Determine the inflection points of the function $f(x) = x^3 + 1$

(4)(a)Trace the curve of the function $f(x) = \frac{1}{x^2 - 1}$

(b)Evaluate the following integrals:

$$(i)\int \frac{x+1}{x^2-5x+6} dx$$

$$(ii)\int (\cos x)^2 dx$$

$$(iii)\int x e^{x} dx$$

(5)(a)Evaluate the following integrals: (i) $\int_{0}^{2} (3x^2 + 2x) dx$ (ii) $\int_{0}^{1} (2 + \frac{1}{x+3}) dx$

(ii)
$$\int_{0}^{1} (2 + \frac{1}{x+3}) dx$$

(b) Find the area of the region bounded by the curve $y = 3x^2 + 2$, x-axis, $x \in [0, 2]$

(c)Evaluate the volume of the solid generated by revolving the region bounded by the curve $y = e^{x} + 1$, x-axis and $x \in [0, 1]$ about x-axis.

Good Luck

Dr. Mohamed H. Eid